1. Use the principle of mathematical induction to show that $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$. [1 point]
Sol: (1) check for $n=1$: $1=\frac{1(1+1)}{2} \vee$
base (0.1 p .)
(2) assume that the statement holds for $k \in \mathbb{N}, k \geq 1$, that is:

$$
1+2+\cdots+k=\frac{k(k+1)}{2}
$$

We now check if the statement is true for $k+1$:

$$
\begin{aligned}
1+2+\cdots+k+(k+1) & =\frac{k(k+1)}{2}+k+1 \\
& =\frac{k(k+1)+2(k+1)}{2}=\frac{(k+1)(k+2)}{2} \quad \text { base }+ \text { induction (0.75p.) }
\end{aligned}
$$

This shows, by induction, that the stotement is valid for $k+1$.
Thus, by mathematical induction, we have shown that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
all steps correct + conclusion (ip)
$2(v 1)$. Use mathematical induction to prove that $3^{2 n}-1$ is divisible by $8 \quad \forall n \in \mathbb{N}$. [1p.]
Sol: (1) Check for $n=1: \quad 3^{2}-1=8$, which is divisible by $8 \underset{2 k}{\checkmark}$ bose (0.1p)
(2) Assume the statement is true for $k \in \mathbb{N}$. That is: $3-1=8 \mathrm{~A}$
where A is a positive integer. We now check if the statement holds for $k+1$:

$$
3^{2(k+1)}-1=3^{2 k+2}-1=9 \cdot 3^{2 k}-1+9-9=9\left[3^{2 k}-1\right]+8=9(8 A)+8
$$

which is divisible by 8 .
So, by mathematical induction we have shown that $3^{2 n}-1$ is divisible by 8 for all $n \in \mathbb{N}$.
$2\left(v_{2}\right)$ Use mathematical induction to prove that $4^{n}+15 n-1$ is divisible by 9 for all $n \in \mathbb{N}$.
Sol: (1) Check for $n=1: \quad 4^{1}+15-1=18$ which is divisible by $9 . \checkmark$ base ($0.1 p$)
(2) Assume the statement holds for $k \in \mathbb{N}$. That is $4^{k}+15 k-1$
is divisible by 9 , which can be rewritten as $4^{k}+15^{k}-1=9 A$, where A is an integer. We now check if the statement holds for $k+1$:

$$
4^{k+1}+15(k+1)-1=4 \cdot 4^{k}+15 k+15-1=4\left(4^{k}+15 k-1\right)-45 k+18=
$$

$4(9 A)+9[-5 k+2]$, which is divisible by 9 . \checkmark base + induction $(0.75 p$)
So, by mathematical induction we have shown that $4^{n}+15 n-1$ is divisible by 9 for all $n \in \mathbb{N}$.
3. Let a be the last digit of your student number
3.1 Write the complex numbers $z_{1}=1+(a+1) i$ and $z_{2}=-\frac{1}{2}+(a+2) i$ in polar form. [0. 5pt]
Sol: for $z_{1}: r_{1}=\sqrt{1+(a+1)^{2}}=\sqrt{1+a^{2}+2 a+1}=\sqrt{a^{2}+2 a+2} \quad$ correct: $+(0.05 p)$

$$
\begin{aligned}
& \quad \theta_{1}=\arctan \left(\frac{a+1}{1}\right)=\arctan (a+1) \quad \text { correct: }+(0.1 p) \\
& \rightarrow z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{2}\right)
\end{aligned}
$$

for $z_{2}: \quad r_{2}=\sqrt{\frac{1}{4}+(a+2)^{2}}=\sqrt{\frac{1}{4}+a^{2}+4 a+4}=\sqrt{a^{2}+4 a+\frac{17}{4}}$ correct: $+(0.05 p)$

$$
\begin{aligned}
& \theta_{2}=\arctan (-2(a+2)) \quad \text { correct: }+(0.1 p) \\
\rightarrow z_{2}= & r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)
\end{aligned}
$$

$+(0.2 p)$ if location in the Argand plane is correct. $\left\{\begin{array}{l}z_{1} \text { in the 1st quadrant. } \\ z_{2} \text { in the ind quadrant. }\end{array}\right.$
3.2 $z_{1}^{2} z_{2}^{3}=r_{1}^{2}\left(\cos \left(2 \theta_{1}\right)+i \sin \left(2 \theta_{1}\right)\right) \cdot r_{2}^{3}\left(\cos \left(3 \theta_{2}\right)+i \sin \left(3 \theta_{2}\right)\right)$

$$
[0.5 p t]=r_{1}^{2} r_{2}^{3}\left(\cos \left(2 \theta_{1}+3 \theta_{2}\right)+i \sin \left(2 \theta_{1}+3 \theta_{2}\right)\right)
$$ values are wrong $\rightarrow(0.3 p)$

3.3 $\frac{z_{1}^{3}}{z_{2}^{4}}=\frac{r_{1}^{3}\left(\cos \left(3 \theta_{1}\right)+i \sin \left(3 \theta_{1}\right)\right)}{r_{2}^{4}\left(\cos \left(4 \theta_{2}\right)+i \sin \left(4 \theta_{2}\right)\right)}=\frac{r_{1}^{3}}{r_{2}^{4}}\left[\cos \left(3 \theta_{1}-4 \theta_{2}\right)+i \sin \left(3 \theta_{1}-4 \theta_{2}\right)\right]$
[0.Spt]
if this expression ' appears but numerical - values are wong $\rightarrow(0.3$ P)
$4\left(v_{1}\right)$ Sketch the solutions of $|z-2 i|=|z+3 i| \quad\left[1 . S_{p}\right]$
Sol: $z=a+b i \rightarrow|a+(b-2) i|=\mid a+\left(b+3 i \mid \rightarrow \not \alpha^{2}+(b-2)^{2}=\not a^{2 k}+(b+3)^{2} \rightarrow \not b^{k}-4 b+4=b^{k}+6 b+9\right.$

$$
\rightarrow 10 b=-5 \rightarrow b=-\frac{1}{2}
$$

- criterion $b=-\frac{1}{2} \quad(1 p)$
- sketch (0.5p)
$4\left(v_{2}\right)$ Sketch the solutions of $|z+2 i|=|z-3 i| \quad[1 . S p]$
Sol: $z=a+b i \rightarrow|a+(b+2) i|=|a+(b-3) i| \rightarrow \not q^{\prime}+(b+2)^{2}=\not q^{\prime}+(b-3)^{2} \rightarrow \not \phi^{\prime}+4 b+4=\not \phi^{k}-6 b+9 \rightarrow 10 b=5 \rightarrow b=\frac{1}{2}$

- criterion $b=\frac{1}{2} \quad(1.0 p)$
- sketch (0.5p)
$5\left(v_{1}\right)$ Prove using the ε, δ-definition of limit that $\lim _{x \rightarrow-1}(3 x+1)=-2$. [ip]
Sol: preliminary analysis: $|3 x+1+2|<\varepsilon \leftrightarrow|3 x+3|<\varepsilon \leftrightarrow 3|x+1|<\varepsilon \leftrightarrow|x-(-1)|<\frac{\varepsilon}{3}$

$$
\rightarrow \delta=\frac{\varepsilon}{3}+0.25 p
$$

Proof: for any $\varepsilon>0$, let $\delta=\frac{\varepsilon}{3}$. Then

$$
0<|x-(-1)|<\delta \rightarrow|x+1|<\delta \rightarrow|3 x+3|<3 \delta \rightarrow|3 x+1-(-2)|<3 \delta=\varepsilon .
$$

it follows from the ε, δ-definition of limit that $\lim _{x \rightarrow-1}(3 x+1)=-2$.
$S\left(v_{2}\right)$ Prove using the ε, δ - definition of limit that $\lim _{x \rightarrow-1}(4 x+2)=-2 \quad[1 p]$
Sol: preliminary analysis: $|4 x+2-(-2)|<\varepsilon \leftrightarrow|4 x+4|<\varepsilon \leftrightarrow 4|x-(-1)|<\varepsilon$

$$
\rightarrow \delta=\frac{\varepsilon}{4} \quad+0.25 p
$$

Proof: for any $\varepsilon>0$, let $\delta=\frac{\varepsilon}{4}$. Then

$$
0<|x-(-1)|<\delta \rightarrow|x+1|<\delta \rightarrow|4 x+4|<4 \delta \rightarrow|4 x+2-(-2)|<4 \delta=\varepsilon .
$$

It follows from the ε, δ-definition of limit that $\lim _{x \rightarrow-1}(4 x+2)=-2$

$$
+0.75 p
$$

$6\left(v_{1}\right)$ Suppose that the function $f(x)$ is continuous on $[1,5]$ and that the only solutions of $f(x)=3$ are: $x=1$ and $x=4$. If $f(2)=0$, explain why $f(3)<3$. [1 .Sp]
Sol: sketch (optional but very useful):

Suppose $f(3) \geq 3$. Since $f(x)$ is continuos, by the IVT, there is a $c \in(2,3): f(x)=3$, or $f(3)=3$. Both lead to a contradiction, therefore $f(3)<3$.

- Any correct and complete explanation/proof (1.5p)
- Any correct and logic, but incomplete, attempt (0.75 p)
- Any illogic or incorrect attempt (op)
$6\left(v_{2}\right)$ Suppose that the function $f(x)$ is continuous on $[1,5]$ and that the only solutions of $f(x)=2$ are: $x=1$ and $x=4$. If $f(2)=4$, explain why $f(3)>2$. [1.5 p]
Sol: sketch (optional but very useful):
 Suppose $f(3) \leq 2$. Since $f(x)$ is continuos. by the IVT, there is a $c \in(2,3): f(x)=2$, or $f(3)=2$. Both lead to a contradiction, therefore $f(3)>2$.
- Any correct and complete explanation/proof (1.5p)
- Any correct and logic, but incomplete, attempt (0.75 p)
- Any ilogic or incorrect attempt (0 p)

7. Let n be all the digits of your student number. Find the n-th derivative of $f(x)=x e^{-x} \quad[1.5 p]$

Sol: (1) We prove first that for any $k \in \mathbb{N}, f^{(h)}(x)=(-1)^{k}(x-k) e^{-x}$.
1: for $k=1$ we have $f^{\prime}(x)=-(x-1) e^{-x}$ which is indeed correct.
2: assume $f^{(k)}(x)=(-1)^{k}(x-k) e^{-x}$. Then:

$$
\begin{aligned}
f^{(k+1)}(x) & =\frac{d}{d x}\left[f^{(k)}(x)\right]=\frac{d}{d x}\left[(-1)^{k}(x-k) e^{-x}\right]=(-1)^{k}\left[e^{-x}-(x-k) e^{-x}\right] \\
& =(-1)^{k}\left[-(x-(k+1)) e^{-x}\right]=(-1)^{k+1}\left[x-(k+1) e^{-x}\right]
\end{aligned}
$$

Thus, by mathematical induction if $f(x)=x e^{-x}$, then $f^{(k)}(x)=(-1)^{k}(x-k) e^{-x}$
$\forall k \in \mathbb{N}$ 。
any (not necessarily via induction)

- Proof + correct substitution of student number (1.5p)
- No proof, but good justification of the formula (e.g. $f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}, \ldots$) + correct substitution of student number (ip)
- Simply using the formula with no justification (Op)

